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The first integrals and orbit equation for the Kepler problem 
with drag 

P G L Leach? 
lnstituut voor Theoretische Mechanika, Rijksuniversiteit Gent, Gent, Belgium 
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Abstract. First integrals for the classical Kepler problem with drag were obtained by 
Jezewski and Mittleman. A derivation which is more attractive from an intuitive point of 
view is provided and this leads naturally to the orbit equation as for the standard Kepler 
problem. 

1. Introduction 

The Kepler problem with drag has been of some interest in the study of the motion 
of satellites moving sufficiently close to the Earth to be affected by its atmosphere. 
Few solutions, either analytic or in closed form, exist. Brouwer and Hori (1961) 
obtained a closed form solution which included first-order corrections due to a velocity 
square law in drag acceleration. Danby (1962) proposed a drag law which was 
proportional to the velocity and inversely proportional to the square of the radial 
distance. Assuming that the constant of proportionality was small he obtained a 
first-order perturbation solution. Mittleman and Jezewski (1982) obtained an analytic 
solution of this same problem and, in Jezewski and Mittleman (1983), demonstrated 
that there existed first integrals which were the direct analogues of the angular momen- 
tum, the energy and the Laplace-Runge-Lenz vector of the classical Kepler problem. 

The method which they adopted was the simple one of manipulating the equation 
of motion as had been used by Collinson (1973) in his study of the Kepler problem 
and Sarlet and Bahar (1980) for a variety of non-linear problems. Perhaps because of 
the influence of earlier work on the Kepler problem with drag the actual derivation 
of the integrals was not as simple as the principle used and the physical intuition 
inherent in the approach tended to become lost in the mathematics. 

In this paper we show how the first integrals and orbit equation for the Kepler 
problem with the drag law proposed by Danby and Mittleman and Jezewski can be 
obtained in a simple fashion which emphasises the physics and does not become 
obscured by unnecessarily complicated mathematics. We do  not suggest that this 
simple approach is the best method to use in the search for first integrals of classical 
motions. It is specific and should not be compared with general methods such as 
Noether’s theorem (for an excellent review of which see Sarlet and Cantrijn (1981)) 
or the ‘direct approach’ (GasCon er al 1982, Lewis and Leach 1982, Moreira 1983). 
However, for this problem the form of the Lagrangian is not yet known and so it is 
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not possible to use Noether’s theorem and the first integrals are such that the use of 
the direct approach would require considerable inventiveness in guessing an appropri- 
ate ansatz. The Lie theory of extended groups was used by Leach (1981) to obtain 
the first integrals of the Kepler problem, but it has not been possible (thus far) to do 
the same when drag is present. We have remarked that the method to be used here is 
specific, but it does appear to be suited to problems related to the Kepler problem. 
Recently Gorringe and Leach (1986) used it to obtain the first integrals for the 
‘time-dependent Kepler problem’ for which the equation of motion is 

i: = ii( t ) r  + p r /  r3u(  t )  (1) 

where U(?) is an arbitrary (twice differentiable) function of time. This problem had 
been previously treated with more standard approaches by Katzin and Levine (1983) 
and Leach (1985). Consequently, despite the specific nature of the method, we suggest 
that it may be fruitful to investigate just how wide its area of applicability is. 

2. An integral related to angular momentum 

The classical Kepler problem with drag proportional to the velocity and inversely 
proportional to the square of the radial distance may be described by the equation of 
motion 

a i  p r  i:+-+-=o 
r2 r3 

in reduced coordinates where a and p are constants. (In fact one can rescale the 
variables to make a and p both one, but they are kept for physical considerations.) 
Taking the vector product of ( 2 )  with r we have 

r x i  
r 

r x r + a T = O  

* a L  
L + - = o  

r2 

(3) 

where L = r x i is the angular momentum. Clearly the angular momentum is not 
conserved, but, on taking the vector product of ( 3 )  with L, we see that 

L x L = O .  (4) 

Hence L is parallel to L and so the unit vector in the direction of L, i, is constant 
(here, as elsewhere is used to denote a unit vector). The motion lies in a fixed plane 
and we take the origin to lie within the plane so that, when we require a coordinate 
representation, we may use plane polar coordinates ( r ,  e) .  We rewrite (3) as 

(i + a e ) i  = 0 ( 5 )  

from which it is evident that there exists a conserved scalar 
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3. The generalisation of Hamilton's vector 

Equation (3) contains still more useful information. Rewriting it as 

our equation of motion (2) takes the form 

Dividing by L we have 

Recognising that r'i  = L = h - a0 it follows that there exists a vector first integral which 
is the appropriate generalisation of Hamilton's vector for the Kepler problem. I t  is 

;e 
K = - + p  5 , d t  

L ( h - a e )  

in which the integral is evaluated in terms of si and ci functions as follows. Writing 
i as i cos e + j  sin-8 we have (see Gradshteyn and Ryzhik (1965) 2.641.1-4) 

c o s e d e  - - - - ~ [ c o s ~ s i ( ~ - ~ ) + s i n ~ c i ( B a ) l  1 COS e 
] ( h - a B ) . a  h - a 0  a2  

/ ( h - a @ ) ' - a  h - a 0  a 
sin 0 d e  -_- 1 sin 0 +A [cos ci( e -a) -sin a si( e -31 

so that the conserved vector is 

K = + E + Ik  { [sin( e - $) ci ( e - 3) - cos ( 6 - $) si ( e - a)] C 
+ [cos( 6 -a) ci( e -$) +sin(e --!) si(6 -:)I $1. 

L hae 

It is evident that the analogue of the Laplace-Runge-Lenz vector is 

A r x t  p J = K x L = - - - -  
L a h - a 0  

+f { [ c o s (  e -:) ci( 6 -:) +sin( 6 -:) si( 0 -a)] i 
- [sin( 0 -$) ci( e -$) -cos( e -a) si(@ -:)I i). 

These expressions for the first integrals may be written more compactly if we define 
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so that now 

4. An energy-like integral 

The existence of the two conserved vectors is sufficient to specify the motion. Typically 
one searches for an energy-like first integral even when it is not necessary. For example 
in the case of the Kepler problem we find that energy, angular momentum and 
Hamilton's vector e( = i+  p i /  L )  are related according to 

E = l e .  2 e -$p2 /L2 .  (18) 

Such a relationship does not persist in the case of the Kepler problem with drag. There 
is a small mistake in Jezewski and Mittleman (1983) where it is stated that the energy-like 
integral is (in our notation) J .  J to within an additive constant. In fact it is i J .  J. 

The reason for this departure from the classical Kepler problem is found in the 
problem of integration. For the Kepler problem with 

it suffices to take the scalar product with i as this then renders the second term as an 
exact derivative. In the present problem the relevant equation is (9) and there is a 
term L-' in the second term and this is no longer constant as in the Kepler problem. 
We must rewrite (9) as 

and take the scalar product with K to obtain the energy-like first integral 

1 i . r  1 
2 L  L 

I = - 2-- (igf( e) + r ig(@))  +;(gf(e)2+ g(e)2) ,  

However, for the reason which we outlined above we do not become as excited about 
I as is our wont for other problems. Were one to somehow come up with a quantum 
mechanical Coulomb problem with such a drag law, I would probably be of use, but 
its interpretation as an operator could pose difficulties due to the inverse powers of L. 

5. The orbit equation 

As in other Kepler-like problems the analogue of the Laplace-Runge-Lenz vector 
plays a key role in the determination of the orbit equation. I f  we now specify 0 to be 
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Figure 1. Orbit for J =A, g = 500, h = 36n, (I = 1. 
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Figure 2. Orbit for J = $, p = 500, h = 3 6 7 ,  a = 1. 

the angle between J and r and take the scalar product of J with r, we have, after 
some rearrangement, 

1 
J COS e - g( e)' r ( 0 )  = 

We may use this relationship to compute orbits for various values of the parameters. 
Two orbits are depicted in figures 1 and 2. 
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